Loading…
Branches, quivers, and ideals for knot complements
We generalize the FK invariant, i.e. Zˆ for the complement of a knot K in the 3-sphere, the knots-quivers correspondence, and A-polynomials of knots, and find several interconnections between them. We associate an FK invariant to any branch of the A-polynomial of K and we work out explicit expressio...
Saved in:
Published in: | Journal of geometry and physics 2022-07, Vol.177 (C), p.104520, Article 104520 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We generalize the FK invariant, i.e. Zˆ for the complement of a knot K in the 3-sphere, the knots-quivers correspondence, and A-polynomials of knots, and find several interconnections between them. We associate an FK invariant to any branch of the A-polynomial of K and we work out explicit expressions for several simple knots. We show that these FK invariants can be written in the form of a quiver generating series, in analogy with the knots-quivers correspondence. We discuss various methods to obtain such quiver representations, among others using R-matrices. We generalize the quantum a-deformed A-polynomial to an ideal that contains the recursion relation in the group rank, i.e. in the parameter a, and describe its classical limit in terms of the Coulomb branch of a 3d-5d theory. We also provide t-deformed versions. Furthermore, we study how the quiver formulation for closed 3-manifolds obtained by surgery leads to the superpotential of 3d N=2 theory T[M3] and to the data of the associated modular tensor category MTC[M3]. |
---|---|
ISSN: | 0393-0440 1879-1662 1879-1662 |
DOI: | 10.1016/j.geomphys.2022.104520 |