Loading…
Interacting polymer-modification enzymes in heparan sulfate biosynthesis
Glucuronyl 5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) into L-iduronic acid (IdoA) units, through a mechanism involving reversible abstraction of a proton at C5 of hexuronic acid residues. Incubations of a [4GlcAβ1–4GlcNSO3α1-]n precursor substrate with recombinant enzymes in a D2O/H2O med...
Saved in:
Published in: | Carbohydrate polymers 2023-01, Vol.299, p.120191-120191, Article 120191 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glucuronyl 5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) into L-iduronic acid (IdoA) units, through a mechanism involving reversible abstraction of a proton at C5 of hexuronic acid residues. Incubations of a [4GlcAβ1–4GlcNSO3α1-]n precursor substrate with recombinant enzymes in a D2O/H2O medium enabled an isotope exchange approach to the assessment of functional interactions of Hsepi with hexuronyl 2-O-sulfotransferase (Hs2st) and glucosaminyl 6-O-sulfotransferase (Hs6st), both involved in the final polymer-modification steps. Enzyme complexes were supported by computational modeling and homogeneous time resolved fluorescence. GlcA and IdoA D/H ratios related to product composition revealed kinetic isotope effects that were interpreted in terms of efficiency of the coupled epimerase and sulfotransferase reactions. Evidence for a functional Hsepi/Hs6st complex was provided by selective incorporation of D atoms into GlcA units adjacent to 6-O-sulfated glucosamine residues. The inability to achieve simultaneous 2-O- and 6-O-sulfation in vitro supported topologically separated reactions in the cell. These findings provide novel insight into the roles of enzyme interactions in heparan sulfate biosynthesis.
[Display omitted] |
---|---|
ISSN: | 0144-8617 1879-1344 1879-1344 |
DOI: | 10.1016/j.carbpol.2022.120191 |