Loading…
Voltage regulation during short-circuit faults in low voltage distributed generation systems
As the penetration of inverter-based distributed generations into microgrids continues to rise, the significance of power electronic inverters in modern power systems becomes increasingly pronounced. They are designed to have fault ride-through capabilities, enabling them to sustain operation even d...
Saved in:
Published in: | Electric power systems research 2024-09, Vol.234, p.110596, Article 110596 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As the penetration of inverter-based distributed generations into microgrids continues to rise, the significance of power electronic inverters in modern power systems becomes increasingly pronounced. They are designed to have fault ride-through capabilities, enabling them to sustain operation even during and after fault conditions. This paper presents a novel voltage compensation strategy based on the line impedances addressing both positive and negative-sequence aspects, for a three-phase three-wire inverter deployed to regulate the low-voltage network during unsymmetrical faults, thereby preserving voltage stability. The control strategy is carried out in a synchronous reference frame (dq) to govern the positive and negative-sequence voltages and currents of the inverter. By synthesizing AC currents, the inverter restores the positive-sequence voltage to its rated value while mitigating negative-sequence voltage at the point of common coupling arising from unsymmetrical faults. Through MATLAB/Simulink, are investigated three unsymmetrical fault scenarios (single line-to-ground, line-to-line, and double line-to-ground faults) within the low-voltage distribution network of the 18-bus European Cigré, incorporating three inverters equipped with the proposed voltage support capability. The results confirm that inverter-interfaced distributed generators with local voltage support can improve the system’s fault ride-through capability by reducing voltage drops and unbalances.
•Voltage resilience in the face of short-circuit challenges.•Balancing voltage fluctuations during grid faults.•Grid-supporting inverters optimize fault response. |
---|---|
ISSN: | 0378-7796 1873-2046 1873-2046 |
DOI: | 10.1016/j.epsr.2024.110596 |