Loading…
Preconditioned implicit solution of linear hyperbolic equations with adaptivity
This paper describes a method for solving hyperbolic partial differential equations using an adaptive grid: the spatial derivatives are discretised with a finite volume method on a grid which is structured and partitioned into blocks which may be refined and derefined as the solution evolves. The so...
Saved in:
Published in: | Journal of computational and applied mathematics 2004-09, Vol.170 (2), p.269-289 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a method for solving hyperbolic partial differential equations using an adaptive grid: the spatial derivatives are discretised with a finite volume method on a grid which is structured and partitioned into blocks which may be refined and derefined as the solution evolves. The solution is advanced in time via a backward differentiation formula. The discretisation used is second-order accurate and stable on Cartesian grids. The resulting system of linear equations is solved by GMRES at every time-step with the convergence of the iteration being accelerated by a semi-Toeplitz preconditioner. The efficiency of this preconditioning technique is analysed and numerical experiments are presented which illustrate the behaviour of the method on a parallel computer. |
---|---|
ISSN: | 0377-0427 1879-1778 1879-1778 |
DOI: | 10.1016/j.cam.2004.01.041 |