Loading…
Incorporation of Metals into Calcite in a Deep Anoxic Granite Aquifer
Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water–rock interaction in the upper crust and for retention mechanisms associated with underground repositories for toxic wastes. Metal scavenging into c...
Saved in:
Published in: | Environmental science & technology 2018-01, Vol.52 (2), p.493-502 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding metal scavenging by calcite in deep aquifers in granite is of importance for deciphering and modeling hydrochemical fluctuations and water–rock interaction in the upper crust and for retention mechanisms associated with underground repositories for toxic wastes. Metal scavenging into calcite has generally been established in the laboratory or in natural environments that cannot be unreservedly applied to conditions in deep crystalline rocks, an environment of broad interest for nuclear waste repositories. Here, we report a microanalytical study of calcite precipitated over a period of 17 years from anoxic, low-temperature (14 °C), neutral (pH: 7.4–7.7), and brackish (Cl: 1700–7100 mg/L) groundwater flowing in fractures at >400 m depth in granite rock. This enabled assessment of the trace metal uptake by calcite under these deep-seated conditions. Aquatic speciation modeling was carried out to assess influence of metal complexation on the partitioning into calcite. The resulting environment-specific partition coefficients were for several divalent ions in line with values obtained in controlled laboratory experiments, whereas for several other ions they differed substantially. High absolute uptake of rare earth elements and U(IV) suggests that coprecipitation into calcite can be an important sink for these metals and analogousactinides in the vicinity of geological repositories. |
---|---|
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/acs.est.7b05258 |