Loading…
Scalable monoids and quantity calculus
We define scalable monoids and prove their fundamental properties. Congruence relations on scalable monoids, direct and tensor products, subalgebras and homomorphic images of scalable monoids, and unit elements of scalable monoids are defined and investigated. A quantity space is defined as a commut...
Saved in:
Published in: | Semigroup forum 2023-08, Vol.107 (1), p.158-187 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define scalable monoids and prove their fundamental properties. Congruence relations on scalable monoids, direct and tensor products, subalgebras and homomorphic images of scalable monoids, and unit elements of scalable monoids are defined and investigated. A quantity space is defined as a commutative scalable monoid over a field, admitting a finite basis similar to a basis for a free abelian group. Observations relating to the theory of measurement of physical quantities accompany the results about scalable monoids. We conclude that the algebraic theory of scalable monoids and quantity spaces provides a rigorous foundation for quantity calculus. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-023-10371-0 |