Loading…

High-Resolution Computed Tomography with 16-Row MDCT: A Comparison Regarding Visibility and Motion Artifacts of Dose-Modulated Thin Slices and "Step and Shoot" Images

Background: Dose modulation can be used to reduce the radiation dose in computed tomography (CT) examinations while still obtaining the necessary diagnostic image quality. Multidetector-row computed tomography (MDCT) provides the possibility of simultaneous reconstruction of thin and thick slices fr...

Full description

Saved in:
Bibliographic Details
Published in:Acta radiologica (1987) 2008-09, Vol.49 (7), p.755-760
Main Authors: Vikgren, J., Johnsson, Å. A., Flinck, A., Kheddache, S., Milde, H., Båth, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Dose modulation can be used to reduce the radiation dose in computed tomography (CT) examinations while still obtaining the necessary diagnostic image quality. Multidetector-row computed tomography (MDCT) provides the possibility of simultaneous reconstruction of thin and thick slices from the same raw data. Purpose: To compare thin slices reconstructed from a dose-modulated helical acquisition and conventional high-resolution computed tomography (HRCT) images taken with the "step and shoot" technique in terms of visibility and motion artifacts, in order to investigate the possibility of excluding "step and shoot" acquisition from the HRCT examination. Material and Methods: Twenty patients were examined by a dose-modulated helical acquisition, "MDCT smart mA," and by a noncontiguous cross-sectional high-resolution 16-row MDCT examination, "MDCT step and shoot." Images from four anatomical levels, made anonymous regarding identity and technical data, were analyzed in random order by four thoracic radiologists. Results: "MDCT smart mA" was worse than "MDCT step and shoot" in terms of visibility. Concerning motion artifacts, "MDCT smart mA" was better than "MDCT step and shoot." Conclusion: Thin images reconstructed from a dose-modulated 16-row helical MDCT acquisition ("MDCT smart mA"), as performed in our study, do not provide sufficient image quality regarding visibility compared to the "MDCT step and shoot" technique for the latter technique to be excluded from the HRCT examination.
ISSN:0284-1851
1600-0455
DOI:10.1080/02841850802078128