Loading…
Strategy for Minimizing Between-Study Variation of Large-Scale Phenotypic Experiments Using Multivariate Analysis
We have developed a multistep strategy that integrates data from several large-scale experiments that suffer from systematic between-experiment variation. This strategy removes such variation that would otherwise mask differences of interest. It was applied to the evaluation of wood chemical analysi...
Saved in:
Published in: | Analytical chemistry (Washington) 2012-10, Vol.84 (20), p.8675-8681 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a multistep strategy that integrates data from several large-scale experiments that suffer from systematic between-experiment variation. This strategy removes such variation that would otherwise mask differences of interest. It was applied to the evaluation of wood chemical analysis of 736 hybrid aspen trees: wild-type controls and transgenic trees potentially involved in wood formation. The trees were grown in four different greenhouse experiments imposing significant variation between experiments. Pyrolysis coupled to gas chromatography/mass spectrometry (Py-GC/MS) was used as a high throughput-screening platform for fingerprinting of wood chemotype. Our proposed strategy includes quality control, outlier detection, gene specific classification, and consensus analysis. The orthogonal projections to latent structures discriminant analysis (OPLS-DA) method was used to generate the consensus chemotype profiles for each transgenic line. These were thereafter compiled to generate a global dataset. Multivariate analysis and cluster analysis techniques revealed a drastic reduction in between-experiment variation that enabled a global analysis of all transgenic lines from the four independent experiments. Information from in-depth analysis of specific transgenic lines and independent peak identification validated our proposed strategy. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/ac301869p |