Loading…

Strategy for Minimizing Between-Study Variation of Large-Scale Phenotypic Experiments Using Multivariate Analysis

We have developed a multistep strategy that integrates data from several large-scale experiments that suffer from systematic between-experiment variation. This strategy removes such variation that would otherwise mask differences of interest. It was applied to the evaluation of wood chemical analysi...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2012-10, Vol.84 (20), p.8675-8681
Main Authors: Pinto, Rui C, Gerber, Lorenz, Eliasson, Mattias, Sundberg, Björn, Trygg, Johan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have developed a multistep strategy that integrates data from several large-scale experiments that suffer from systematic between-experiment variation. This strategy removes such variation that would otherwise mask differences of interest. It was applied to the evaluation of wood chemical analysis of 736 hybrid aspen trees: wild-type controls and transgenic trees potentially involved in wood formation. The trees were grown in four different greenhouse experiments imposing significant variation between experiments. Pyrolysis coupled to gas chromatography/mass spectrometry (Py-GC/MS) was used as a high throughput-screening platform for fingerprinting of wood chemotype. Our proposed strategy includes quality control, outlier detection, gene specific classification, and consensus analysis. The orthogonal projections to latent structures discriminant analysis (OPLS-DA) method was used to generate the consensus chemotype profiles for each transgenic line. These were thereafter compiled to generate a global dataset. Multivariate analysis and cluster analysis techniques revealed a drastic reduction in between-experiment variation that enabled a global analysis of all transgenic lines from the four independent experiments. Information from in-depth analysis of specific transgenic lines and independent peak identification validated our proposed strategy.
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/ac301869p