Loading…

Validation of consistency of Mendelian sampling variance

Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2018-03, Vol.101 (3), p.2187-2198
Main Authors: Tyrisevä, A.-M., Fikse, W.F., Mäntysaari, E.A., Jakobsen, J., Aamand, G.P., Dürr, J., Lidauer, M.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of the methods available today enable countries to validate their national evaluation models for heterogeneity of genetic variance. We describe a new validation method to fill this gap comprising the following steps: estimating within-year genetic variances using Mendelian sampling and its prediction error variance, fitting a weighted linear regression between the estimates and the years under study, identifying possible outliers, and defining a 95% empirical confidence interval for a possible trend in the estimates. We tested the specificity and sensitivity of the proposed validation method with simulated data using a real data structure. Moderate (M) and small (S) size populations were simulated under 3 scenarios: a control with homogeneous variance and 2 scenarios with yearly increases in phenotypic variance of 2 and 10%, respectively. Results showed that the new method was able to estimate genetic variance accurately enough to detect bias in genetic variance. Under the control scenario, the trend in genetic variance was practically zero in setting M. Testing cows with an average birth year class size of more than 43,000 in setting M showed that tolerance values are needed for both the trend and the outlier tests to detect only cases with a practical effect in larger data sets. Regardless of the magnitude (yearly increases in phenotypic variance of 2 or 10%) of the generated trend, it deviated statistically significantly from zero in all data replicates for both cows and bulls in setting M. In setting S with a mean of 27 bulls in a year class, the sampling error and thus the probability of a false-positive result clearly increased. Still, overall estimated genetic variance was close to the parametric value. Only rather strong trends in genetic variance deviated statistically significantly from zero in setting S. Results also showed that the new method was sensitive to the quality of the approximated reliabilities of breeding values used in calculating the prediction error variance. Thus, we recommend that only animals with a reliability of Mendelian sampling higher than 0.1 be included in the test and that low heritability traits be analyzed using bull data set
ISSN:0022-0302
1525-3198
1525-3198
DOI:10.3168/jds.2017-13255