Loading…
High-throughput 5'P sequencing enables the study of degradation-associated ribosome stalls
RNA degradation is critical for gene expression and mRNA quality control. mRNA degradation is connected to the translation process up to the degree that 5'-3' mRNA degradation follows the last translating ribosome. Here, we present an improved high-throughput 5'P degradome RNA-sequenc...
Saved in:
Published in: | Cell reports methods 2021-05, Vol.1 (1), p.100001-100001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | RNA degradation is critical for gene expression and mRNA quality control. mRNA degradation is connected to the translation process up to the degree that 5'-3' mRNA degradation follows the last translating ribosome. Here, we present an improved high-throughput 5'P degradome RNA-sequencing method (HT-5Pseq). HT-5Pseq is easy, scalable, and uses affordable duplex-specific nuclease-based rRNA depletion. We investigate
ribosome stalls focusing on translation termination. By comparing ribosome stalls identified by ribosome profiling, disome-seq and HT-5Pseq, we find that degradation-associated ribosome stalls are often enriched in Arg preceding the stop codon. On the contrary, mRNAs depleted for those stalls use more frequently a TAA stop codon preceded by hydrophobic amino acids. Finally, we show that termination stalls found by HT-5Pseq, and not by other approaches, are associated with decreased mRNA stability. Our work suggests that ribosome stalls associated with mRNA decay can be easily captured by investigating the 5'P degradome. |
---|---|
ISSN: | 2667-2375 2667-2375 |
DOI: | 10.1016/j.crmeth.2021.100001 |