Loading…
DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair
A series of critical pathways are responsible for the detection, signaling, and restart of replication forks that encounter blocks during S-phase progression. Small base lesions may obstruct replication fork progression and processing, but the link between repair of small lesions and replication for...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2016-03, Vol.76 (5), p.1078-1088 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A series of critical pathways are responsible for the detection, signaling, and restart of replication forks that encounter blocks during S-phase progression. Small base lesions may obstruct replication fork progression and processing, but the link between repair of small lesions and replication forks is unclear. In this study, we investigated a hypothesized role for DNA-PK, an important enzyme in DNA repair, in cellular responses to DNA replication stress. The enzyme catalytic subunit DNA-PKcs was phosphorylated on S2056 at sites of stalled replication forks in response to short hydroxyurea treatment. Using DNA fiber experiments, we found that catalytically active DNA-PK was required for efficient replication restart of stalled forks. Furthermore, enzymatically active DNA-PK was also required for PARP-dependent recruitment of XRCC1 to stalled replication forks. This activity was enhanced by preventing Mre11-dependent DNA end resection, suggesting that XRCC1 must be recruited early to an unresected stalled fork. We also found that XRCC1 was required for effective restart of a subset of stalled replication forks. Overall, our work suggested that DNA-PK and PARP-dependent recruitment of XRCC1 is necessary to effectively protect, repair, and restart stalled replication forks, providing new insight into how genomic stability is preserved. |
---|---|
ISSN: | 0008-5472 1538-7445 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-15-0608 |