Loading…

Biomechanical comparison of semi-rigid pediatric locking nail versus titanium elastic nails in a femur fracture model

Background The treatment for length-unstable diaphyseal femur fractures among school-age children is commonly intramedullary elastic nails, with or without end caps. Another possible treatment is the semi-rigid pediatric locking nail (PLN). The purpose of this biomechanical study was to assess the s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of children's orthopaedics 2015-02, Vol.9 (1), p.77-84
Main Authors: Flinck, Marianne, von Heideken, Johan, Janarv, Per-Mats, Wåtz, Veronica, Riad, Jacques
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background The treatment for length-unstable diaphyseal femur fractures among school-age children is commonly intramedullary elastic nails, with or without end caps. Another possible treatment is the semi-rigid pediatric locking nail (PLN). The purpose of this biomechanical study was to assess the stability of a length-unstable oblique midshaft fracture in a synthetic femur model stabilized with different combinations of intramedullary elastic nails and with a PLN. Methods Twenty-four femur models with an intramedullary canal diameter of 10.0 mm were used. Three groups with various combinations of titanium elastic nails (TEN) with end caps and one group with a PLN were tested. An oblique midshaft fracture was created, and the models underwent compression, rotation, flexion/extension, and a varus/valgus test, with 50 and 100 % of the forces generated during walking in corresponding planes. Results We present the results [median (range)] from 100 % loading during walking. In axial compression, the PLN was less shortened than the combination with two 4.0-mm TEN [by 4.4 (3.4–5.4) mm vs. 5.2 (4.8–6.6) mm, respectively; p = 0.030]. No difference was found in shortening between the PLN and the four 3.0-mm TEN [by 7.0 (3.3–8.4) mm; p = 0.065]. The two 3.0-mm TEN did not withstand the maximum shortening of 10.0 mm. In external rotation, the PLN rotated 12.0° (7.0–16.4°) while the TEN models displaced more than the maximum of 20.0°. No model withstood a maximal rotation of 20.0° internal rotation. In the four-point bending test, in the coronal and the sagittal plane, all combinations except the two 3.0-mm TEN in extension withstood the maximum angulation of 20.0°. Conclusions PLN provides the greatest stability in all planes compared to TEN models with end caps, even though the difference from the two 4.0-mm or four 3.0-mm TEN models was small.
ISSN:1863-2521
1863-2548
1863-2548
DOI:10.1007/s11832-014-0629-5