Loading…

The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study

The increase in working memory (WM) capacity is an important part of cognitive development during childhood and adolescence. Cross-sectional analyses have associated this development with higher activity, thinner cortex, and white matter maturation in fronto-parietal networks. However, there is stil...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2015-06, Vol.25 (6), p.1587-1595
Main Authors: Darki, Fahimeh, Klingberg, Torkel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increase in working memory (WM) capacity is an important part of cognitive development during childhood and adolescence. Cross-sectional analyses have associated this development with higher activity, thinner cortex, and white matter maturation in fronto-parietal networks. However, there is still a lack of longitudinal data showing the dynamics of this development and the role of subcortical structures. We included 89 individuals, aged 6-25 years, who were scanned 1-3 times at 2-year intervals. Functional magnetic resonance imaging (fMRI) was used to identify activated areas in superior frontal, intraparietal cortices, and caudate nucleus during performance on a visuo-spatial WM task. Probabilistic tractography determined the anatomical pathways between these regions. In the cross-sectional analysis, WM capacity correlated with activity in frontal and parietal regions, cortical thickness in parietal cortex, and white matter structure [both fractional anisotropy (FA) and white matter volume] of fronto-parietal and fronto-striatal tracts. However, in the longitudinal analysis, FA in white matter tracts and activity in caudate predicted future WM capacity. The results show a dynamic of neural networks underlying WM development in which cortical activity and structure relate to current capacity, while white matter tracts and caudate activity predict future WM capacity.
ISSN:1047-3211
1460-2199
1460-2199
DOI:10.1093/cercor/bht352