Loading…
Aggregate formation inhibits proteasomal degradation of polyglutamine proteins
Insoluble protein aggregates are consistently found in neurodegenerative disorders caused by expanded polyglutamine [poly(Q)] repeats. The aggregates contain various components of the ubiquitin/proteasome system, suggesting an attempt of the cell to clear the aberrant substrate. To investigate the e...
Saved in:
Published in: | Human molecular genetics 2002-10, Vol.11 (22), p.2689-2700 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insoluble protein aggregates are consistently found in neurodegenerative disorders caused by expanded polyglutamine [poly(Q)] repeats. The aggregates contain various components of the ubiquitin/proteasome system, suggesting an attempt of the cell to clear the aberrant substrate. To investigate the effect of expanded poly(Q) repeats on ubiquitin/proteasome-dependent proteolysis, we targeted these proteins for proteasomal degradation by the introduction of an N-end rule degradation signal. While soluble poly(Q) proteins were degraded, they resisted proteasomal degradation once present in the aggregates. Stabilization was also observed for proteins that are co-aggregated via interaction with the expanded poly(Q) domain. Introduction of a degradation signal in ataxin-1/Q92 reduced the incidence of nuclear inclusions and the cellular toxicity, conceivably by accelerating the clearance of the soluble substrate. |
---|---|
ISSN: | 0964-6906 1460-2083 1460-2083 |
DOI: | 10.1093/hmg/11.22.2689 |