Loading…
Fluorescence correlation spectroscopy as a method for assessment of interactions between phage displaying antibodies and soluble antigen
Phage display is widely used for expression of combinatorial libraries, not least for protein engineering purposes. Precise selection at the single molecule level will provide an improved tool for generating proteins with complex and distinct properties from large molecular libraries. To establish s...
Saved in:
Published in: | Protein science 2001-08, Vol.10 (8), p.1522-1528 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phage display is widely used for expression of combinatorial libraries, not least for protein engineering purposes. Precise selection at the single molecule level will provide an improved tool for generating proteins with complex and distinct properties from large molecular libraries. To establish such an improved selection system, we here report the detection of specific interactions between phage with displayed antibody fragments and fluorescently labeled soluble antigen based on Fluorescence Correlation Spectroscopy (FCS). Our novel strategy comprises the use of two separate fluorochromes for detection of the phage–antigen complex, either with labeled antiphage antibody or using a labeled antigen. As a model system, we studied a human monoclonal antibody to the hepatitis‐C virus (HCV) envelope protein E2 and its cognate antigen (rE2 or rE1/E2). We could thus assess the specific interactions and determine the fraction of specific versus background phage (26% specific phage). Aggregation of these particular antigens made it difficult to reliably utilize the full potential of cross‐correlation studies using the two labels simultaneously. However, with true monomeric proteins, this will certainly be possible, offering a great advantage in a safer and highly specific detection system. |
---|---|
ISSN: | 0961-8368 1469-896X |
DOI: | 10.1110/ps.5701 |