Loading…

Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows

The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data collect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2018-07, Vol.101 (7), p.6322-6335
Main Authors: Schlageter-Tello, Andrés, Van Hertem, Tom, Bokkers, Eddie A.M., Viazzi, Stefano, Bahr, Claudia, Lokhorst, Kees
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data collection was carried out in 2 experimental sessions (5 mo apart). In every session all cows were assessed for (1) locomotion by 2 observers (Obs1 and Obs2) and by a 3D-ALS; and (2) identification of different types of hoof lesions during hoof trimming (i.e., skin and horn lesions and combinations of skin/horn lesions and skin/hyperplasia). Performances of observers and 3D-ALS for classifying cows as lame or nonlame and for detecting cows affected or nonaffected by types of lesion were estimated using the percentage of agreement (PA), kappa coefficient (κ), sensitivity (SEN), and specificity (SPE). Observers and 3D-ALS showed similar SENlame values for classifying lame cows as lame (SENlame comparison Obs1-Obs2 = 74.2%; comparison observers-3D-ALS = 73.9–71.8%). Specificity values for classifying nonlame cows as nonlame were lower for 3D-ALS when compared with observers (SPEnonlame comparison Obs1-Obs2 = 88.5%; comparison observers-3D-ALS = 65.3–67.8%). Accordingly, overall performance of 3D-ALS for classifying cows as lame and nonlame was lower than observers (Obs1-Obs2 comparison PAlame/nonlame = 84.2% and κlame/nonlame = 0.63; observers-3D-ALS comparisons PAlame/nonlame = 67.7–69.2% and κlame/nonlame = 0.33–0.36). Similarly, observers and 3D-ALS had comparable and moderate SENlesion values for detecting horn (SENlesion Obs1 = 68.6%; Obs2 = 71.4%; 3D-ALS = 75.0%) and combinations of skin/horn lesions (SENlesion Obs1 = 51.1%; Obs2 = 64.5%; 3D-ALS = 53.3%). The SPEnonlesion values for detecting cows without lesions when classified as nonlame were lower for 3D-ALS than for observers (SPEnonlesion Obs1 = 83.9%; Obs2 = 80.2%; 3D-ALS = 60.2%). This was translated into a poor overall performance of 3D-ALS for detecting cows affected and nonaffected by horn lesions (PAlesion/nonlesion Obs1 = 80.6%; Obs2 = 78.3%; 3D-ALS = 63.5% and κlesion/nonlesion Obs1 = 0.48; Obs2 = 0.44; 3D-ALS = 0.25) and skin/horn lesions (PAlesion/nonlesion Obs1 = 75.1%; Obs2 = 75.9%; 3D-ALS = 58.6% and κlesion/nonlesion Obs1 = 0.35; Obs2 = 0.42; 3D-ALS = 0.10), when compared with observers. Performance of observers and 3D-ALS for detecting skin lesions was poor (SENlesion for Obs1, Obs2, and 3D-ALS
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2017-13768