Loading…
Energy Efficiency of Capacitive Deionization
Capacitive deionization (CDI) as a class of electrochemical desalination has attracted fast-growing research interest in recent years. A significant part of this growing interest is arguably attributable to the premise that CDI is energy efficient and has the potential to outcompete other convention...
Saved in:
Published in: | Environmental science & technology 2019-04, Vol.53 (7), p.3366-3378 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Capacitive deionization (CDI) as a class of electrochemical desalination has attracted fast-growing research interest in recent years. A significant part of this growing interest is arguably attributable to the premise that CDI is energy efficient and has the potential to outcompete other conventional desalination technologies. In this review, systematic evaluation of literature data reveals that while the absolute energy consumption of CDI is in general low, most existing CDI systems achieve limited energy efficiency from a thermodynamic perspective. We also analyze the causes for the relatively low energy efficiency and discuss factors that may lead to enhanced energy efficiency for CDI. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.8b04858 |