Loading…
Corrosion behavior of low alloy steels in a wet–dry acid humid environment
The corrosion behavior of corrosion resistant steel(CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel(CS) using corrosion loss, polarization curves, X-ray diffraction(XRD), scanning electron microscopy(SEM), electron probe micro-analysis(EPMA), N2 ads...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2016-09, Vol.23 (9), p.1076-1086 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The corrosion behavior of corrosion resistant steel(CRS) in a simulated wet–dry acid humid environment was investigated and compared with carbon steel(CS) using corrosion loss, polarization curves, X-ray diffraction(XRD), scanning electron microscopy(SEM), electron probe micro-analysis(EPMA), N2 adsorption, and X-ray photoelectron spectroscopy(XPS). The results show that the corrosion kinetics of both steels were closely related to the composition and compactness of the rust, and the electrochemical properties of rusted steel. Small amounts of Cu, Cr, and Ni in CRS increased the amount of amorphous phases and decreased the content of γ-Fe OOH in the rust, resulting in higher compactness and electrochemical stability of the CRS rust. The elements Cu, Cr, and Ni were uniformly distributed in the CRS rust and formed CuFeO2, Cu2O, CrOOH, NiFe2O4, and Ni2O3, which enhanced the corrosion resistance of CRS in the wet–dry acid humid environment. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-016-1325-x |