Loading…
融合正交几何信息的非线性等式约束整体最小二乘平差及迭代算法
P221; 正交距离最小二乘和加权整体最小二乘是解自变量含误差拟合问题的两种独立准则.加权整体最小二乘与正交距离最小二乘不同,它不考虑测量点与拟合点之间的连线垂直于拟合对象的几何信息,不能确保测量点到拟合对象的距离的平方和为极小值.针对该问题,本文将正交几何信息作为约束条件融入加权整体最小二乘,提出一种约束方程带有误差改正数的非线性等式约束整体最小二乘平差法.首先,把加权整体最小二乘平差的函数式看作是非线性方程,连同正交几何约束方程一并线性化,得到线性的平差函数方程;然后,采用拉格朗日乘数法推导其参数估计及精度评定公式,并给出迭代计算算法;最后,以平面直线拟合为例,对本文方法和计算算法进行验证...
Saved in:
Published in: | 测绘学报 2020-07, Vol.49 (7), p.816-823 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Chinese |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | P221; 正交距离最小二乘和加权整体最小二乘是解自变量含误差拟合问题的两种独立准则.加权整体最小二乘与正交距离最小二乘不同,它不考虑测量点与拟合点之间的连线垂直于拟合对象的几何信息,不能确保测量点到拟合对象的距离的平方和为极小值.针对该问题,本文将正交几何信息作为约束条件融入加权整体最小二乘,提出一种约束方程带有误差改正数的非线性等式约束整体最小二乘平差法.首先,把加权整体最小二乘平差的函数式看作是非线性方程,连同正交几何约束方程一并线性化,得到线性的平差函数方程;然后,采用拉格朗日乘数法推导其参数估计及精度评定公式,并给出迭代计算算法;最后,以平面直线拟合为例,对本文方法和计算算法进行验证.试验结果表明:①本文方法和算法具有可行性;②与加权最小二乘和加权整体最小二乘相比,本文方法计算的测量点到拟合直线的垂直距离平方和最小;③本文方法计算的测量点到拟合直线的距离与测量点到拟合点的距离相等. |
---|---|
ISSN: | 1001-1595 |
DOI: | 10.11947/j.AGCS.2020.20190112 |