Loading…
全Bregman散度和二部图相结合的高光谱图像稳健聚类算法
P237; 针对传统基于图的谱聚类算法底层计算复杂度高、聚类精度低,难以应用于大规模数据聚类,本文利用锚点与数据点之间的相似性度量,提出了一种基于图的聚类算法来处理高光谱图像分类问题,称为全Bregman散度和二部图相结合的高光谱图像稳健聚类算法(RTBBG).首先,在构造二部图的过程中添加了高光谱图像的空间信息,使得高光谱图像丰富的空间信息得以充分利用;然后,利用全Bregman散度来优化传统的欧氏距离作为数据点与锚点之间新的相似性度量,使得构建的二部图更加稳定,增强了算法稳健性;最后,利用K-means算法直接进行光谱聚类得到最终聚类结果.通过在3个大规模高光谱数据集上进行测试,验证了本文...
Saved in:
Published in: | 测绘学报 2023-10, Vol.52 (10), p.1749-1759 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Chinese |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | P237; 针对传统基于图的谱聚类算法底层计算复杂度高、聚类精度低,难以应用于大规模数据聚类,本文利用锚点与数据点之间的相似性度量,提出了一种基于图的聚类算法来处理高光谱图像分类问题,称为全Bregman散度和二部图相结合的高光谱图像稳健聚类算法(RTBBG).首先,在构造二部图的过程中添加了高光谱图像的空间信息,使得高光谱图像丰富的空间信息得以充分利用;然后,利用全Bregman散度来优化传统的欧氏距离作为数据点与锚点之间新的相似性度量,使得构建的二部图更加稳定,增强了算法稳健性;最后,利用K-means算法直接进行光谱聚类得到最终聚类结果.通过在3个大规模高光谱数据集上进行测试,验证了本文算法的有效性. |
---|---|
ISSN: | 1001-1595 |
DOI: | 10.11947/j.AGCS.2023.20220637 |