Loading…

彩色图像多尺度引导的深度图像超分辨率重建

为获得更优的深度图像超分辨率重建结果,本文构建了彩色图像多尺度引导深度图像超分辨率重建卷积神经网络。该网络使用多尺度融合方法实现高分辨率(HR)彩色图像特征对低分辨率(LR)深度图像特征的引导,有益于恢复图像细节信息。在对LR深度图像提取特征的过程中,构建了多感受野残差块(MRFRB)提取并融合不同感受野下的特征,然后将每一个MRFRB输出的特征连接、融合,得到全局融合特征。最后,通过亚像素卷积层和全局融合特征,得到HR深度图像。实验结果表明,该算法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。...

Full description

Saved in:
Bibliographic Details
Published in:Guang Dian Gong Cheng = Opto-Electronic Engineering 2020-04, Vol.47 (4), p.190260-49
Main Authors: 于淑侠, 胡良梅, 张旭东, 付绪文 / Yu Shuxia, Hu Liangmei, Zhang, Xudong, Fu Xuwen
Format: Article
Language:chi ; eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:为获得更优的深度图像超分辨率重建结果,本文构建了彩色图像多尺度引导深度图像超分辨率重建卷积神经网络。该网络使用多尺度融合方法实现高分辨率(HR)彩色图像特征对低分辨率(LR)深度图像特征的引导,有益于恢复图像细节信息。在对LR深度图像提取特征的过程中,构建了多感受野残差块(MRFRB)提取并融合不同感受野下的特征,然后将每一个MRFRB输出的特征连接、融合,得到全局融合特征。最后,通过亚像素卷积层和全局融合特征,得到HR深度图像。实验结果表明,该算法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。
ISSN:1003-501X
DOI:10.12086/oee.2020.190260