Loading…

Preparation of Zn/TiO2 powder and its photocatalytic performance for oxidation of P-nitrophenol

Zn-doped TiO2 catalysts were prepared using a sol-gel method and characterized by XPS,UV-Vis, BET, XRD in this study. Under the irradiation of simulant sunlight, the photocatalytic activity for the degradation of p-nitrophenol was studied too. After irradiation for 2.5 h, the degradation percentage...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear science and techniques 2007-02, Vol.18 (1), p.59-64
Main Authors: LIU, X, XU, Y, ZHONG, Z, FU, Y, DENG, Y
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zn-doped TiO2 catalysts were prepared using a sol-gel method and characterized by XPS,UV-Vis, BET, XRD in this study. Under the irradiation of simulant sunlight, the photocatalytic activity for the degradation of p-nitrophenol was studied too. After irradiation for 2.5 h, the degradation percentage of p-nitrophenol could rise to more than 80 %. The results showed that the spectrum absorption band edge of Zn/TiO2 powder does not broaden obviously comparing with pure TiO2 powder. Zinc exists as Zn (11). When calcined at 973 K, there is a new phase as ZnTiO3 in Zn/TiO2 catalyst. The order of photocatalytic activity of Zn/TiO2 catalysts calcined at different temperatures for p-nitrophenol is 773 K 〉 673 K 〉 873 K 〉 573 K 〉 973 K and the photocatalytic activity of Zn/TiO2 catalyst calcined at 773 K is better than TiO2 catalysts heated at the same temperature, and outclasses that of commercial TiO2 catalyst. It also showed that the photocatalytic degradation of p-nitrophenol follows first-order kinetics under the irradiation of simulant sunlight.
ISSN:1001-8042
2210-3147
DOI:10.1016/S1001-8042(07)60020-7