Loading…

Effect of Na and Cl ions on water evaporation on graphene oxide

Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogen...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear science and techniques 2019-08, Vol.30 (8), p.157-164, Article 122
Main Authors: Nan, Xi, Guo, Yu-Wei, Wan, Rong-Zheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogeneous graphene oxide. The analysis shows an obvious decrease in the evaporation rate from unoxidized regions, which can be attributed to the increased amount of Na + ions near the contact lines. The proximity of Na + significantly extends the H-bond lifetime of the outermost water molecules, which reduces the number of water molecules diffusing from the oxidized to unoxidized regions. Moreover, the effect of the ions on water evaporation is less significant when the oxidation degree varies in a certain range. Our findings advance the understanding of the evaporation process in the presence of ions and highlight the potential application of graphene oxide in achieving controllable evaporation of liquids.
ISSN:1001-8042
2210-3147
DOI:10.1007/s41365-019-0646-7