Loading…

Rapid removal of bisphenol A on highly ordered mesoporous carbon

Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA- 15 mesoporous sil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental sciences (China) 2011-01, Vol.23 (2), p.177-182
Main Authors: Sui, Qian, Huang, Jun, Liu, Yousong, Chang, Xiaofeng, Ji, Guangbin, Deng, Shubo, Xie, Tao, Yu, Gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA- 15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m^2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg.min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40℃. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13.
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(10)60391-9