Loading…

Molecular evolution of the exon 2 of CHS genes and the possibility of its application to plant phylogenetic analysis

The exon 2 of chalcone synthase (CHS) gene is relatively conserved during evolution. In this study, three exon 2 fragments from two species in gymnosperm (Cycas panzhihuaensis, Ginkgo biloba) and seven from four species in angiosperm (Magnolia denudata, Salix babylonica, Nymphaea tetragona, Camellia...

Full description

Saved in:
Bibliographic Details
Published in:Chinese science bulletin 2000-10, Vol.45 (19), p.1735-1742
Main Authors: Wang, Jinling, Qu, Lijia, Chen, Jun, Gu, Hongya, Chen, Zhangliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The exon 2 of chalcone synthase (CHS) gene is relatively conserved during evolution. In this study, three exon 2 fragments from two species in gymnosperm (Cycas panzhihuaensis, Ginkgo biloba) and seven from four species in angiosperm (Magnolia denudata, Salix babylonica, Nymphaea tetragona, Camellia japonica) have been amplified by PCR from genomic DNA and sequenced. Together with other 73 sequences ofCHS collected from EMBL database and literature, these sequences, which embrace 19 families of gymnosperm and angiosperm, have been analyzed for their phylogenetic relations by parsimony method. The result indicated that sequences from the same systematic family usually grouped together except those from Theaceae, Magnoliaceae and Nymphaeaceae. The relative rate test revealed the rate heterogeneity of CHS genes among the families. For the nucleotide substitution the sequences from Asteraceae and Solanaceae evolve faster than those from the other families analyzed while the sequences from Poaceae, Asteraceae and Solanaceae evolve faster for the nonsynonymous substitution. These results suggest that the duplication and extinction events of CHS genes are different among systematic families, therefore it seems impractical to look for orthologous sequences from CHS genes to study plant phylogeny at the family level andlor above. However, it is possible to do so below the family level.
ISSN:1001-6538
2095-9273
1861-9541
2095-9281
DOI:10.1007/BF02886256