Loading…
Even and Odd Coherent States for Time-Dependent Harmonic Oscillator
The dynamical invariant for a general time-dependent harmonic oscillator is constructed by making use of two linearly independent solutions to the classical equation of motion. In terms of this dynamical invariant we define the time-dependent creation and annihilation operators and relevantly introd...
Saved in:
Published in: | Communications in theoretical physics 2002, Vol.38 (7), p.25-30 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dynamical invariant for a general time-dependent harmonic oscillator is constructed by making use of two linearly independent solutions to the classical equation of motion. In terms of this dynamical invariant we define the time-dependent creation and annihilation operators and relevantly introduce even and odd coherent states for time dependent harmonic oscillator. The mathematical and quantum statistical properties of these states are discussed in detail. The harmonic oscillator with periodically varying frequency is treated as a demonstration of our general approach. |
---|---|
ISSN: | 0253-6102 |