Loading…

Numerical simulations of the process of multiple shock–flame interactions

Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier–Stokes equations with a single-step Arrhenius chemical reaction. The two-dimen...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica Sinica 2016-08, Vol.32 (4), p.659-669
Main Authors: Jiang, Hua, Dong, Gang, chen, Xiao, Wu, Jin-Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on a weighted essentially nonoscillatory scheme, the multiple interactions of a flame interface with an incident shock wave and its reshock waves are numerically simulated by solving the compressible reactive Navier–Stokes equations with a single-step Arrhenius chemical reaction. The two-dimensional sinusoidally perturbed premixed flames with different initial perturbed amplitudes are used to investigate the effect of the initial perturbation on the flame evolutions. The results show that the development of the flame interface is directly affected by the initial perturbed amplitudes before the passages of reshock waves, and the perturbation development is mainly controlled by the Richtmyer–Meshkov instability(RMI). After the successive impacts of multiple reshock waves, the chemical reaction accelerates the consumption of reactants and leads to a gradual disappearance of the initial perturbed information. The perturbation developments in frozen flows with the same initial interface as those in reactive flows are also demonstrated.Comparisons of results between the reactive and frozen flows show that a chemical reaction changes the perturbation pattern of the flame interface by decreasing the density gradient,thereby weakening the baroclinic torque in the flame mixing region, and therefore plays a dominant role after the passage of reshock waves.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-015-0552-0