Loading…
Property (X+) for Second-Order Nonlinear Differential Equations of Generalized Euler Type
In this paper the generalized nonlinear Euler differential equation t2k(tu′)u″ + t(f(u)+ k(tu′))u′ + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super...
Saved in:
Published in: | Acta mathematica scientia 2013-09, Vol.33 (5), p.1398-1406 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the generalized nonlinear Euler differential equation t2k(tu′)u″ + t(f(u)+ k(tu′))u′ + g(u) = 0 is considered. Here the functions f(u), g(u) and k(u) satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super) linearity are assumed. We present some necessary and sufficient conditions and some tests for the equivalent planar system to have or fail to have property (X+), which is very important for the existence of periodic solutions and oscillation theory. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(13)60091-0 |