Loading…

GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION

For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dicho...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica scientia 2017-07, Vol.37 (4), p.941-948
Main Author: 杨凌燕 李晓光 吴永洪 Louis CA CCETTA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(17)30049-8