Loading…

New boundary treatment methods for lattice Boltzmann method

In practical fluid dynamic simulations, the boundary condition should be treated carefully because it always has crucial influence on the numerical accuracy, stability and efficiency. Two types of boundary treatment methods for lattice Boltzmann method (LBM) are proposed. One is for the treatment of...

Full description

Saved in:
Bibliographic Details
Published in:Wuhan University journal of natural sciences 2003-03, Vol.8 (1), p.77-85
Main Authors: Cheng, Y-G, Suo, L-S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In practical fluid dynamic simulations, the boundary condition should be treated carefully because it always has crucial influence on the numerical accuracy, stability and efficiency. Two types of boundary treatment methods for lattice Boltzmann method (LBM) are proposed. One is for the treatment of boundaries situated at lattice nodes, and the other is for the approximation of boundaries that are not located at the regular lattice nodes. The first type of boundary treatment method can deal with various dynamic boundaries on complex geometries by using a general set of formulas, which can maintain second-order accuracy. Based on the fact that the fluid flows simulated by LBM are not far from equilibrium, the unknown distributions at a boundary node are expressed as the analogous forms of their corresponding equilibrium distributions. Therefore, the number of unknowns can be reduced and an always-closed set of equations can be obtained for the solutions to pressure, velocity and special boundary conditions on various geometries. The second type of boundary treatment is a complete interpolation scheme to treat curved boundaries. It comes from careful analysis of the relations between distribution functions at boundary nodes and their neighboring lattice nodes. It is stable for all situations and of second-order accuracy. Basic ideas, implementation procedures and verifications with typical examples for the both treatments are presented. Numerical simulations and analyses show that they are accurate, stable, general and efficient for practical simulations.
ISSN:1007-1202
1993-4998
DOI:10.1007/BF02902070