Loading…

Bifurcations of double homoclinic flip orbits with resonant eigenvalues

Concerns double homoclinic loops with orbit flips and two resonant eigenvalues in a four-dimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium, and the solution of a linear variational system to construct a regular map in...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2007-11, Vol.28 (11), p.1517-1526
Main Author: 张天四 朱德明
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Concerns double homoclinic loops with orbit flips and two resonant eigenvalues in a four-dimensional system. We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium, and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops, then compose them to get the important Poincaré map. A simple calculation gives explicitly an expression of the associated successor function. By a delicate analYSiS of the bifurcation equation, we obtain the condition that the original double homoclinic loops are kept, and prove the existence and the existence regions of the large 1-homoclinic orbit bifurcation surface, 2-fold large 1-periodic orbit bifurcation surface, large 2-homoclinic orbit bifurcation surface and their approximate expressions. We also locate the large periodic orbits and large homoclinic orbits and their number.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-007-1111-y