Loading…

Similarity solutions for non-Newtonian power-law fluid flow

The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is establishe...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2014-09, Vol.35 (9), p.1155-1166
Main Authors: Wei, D. M., Al-Ashhab, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63
cites cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63
container_end_page 1166
container_issue 9
container_start_page 1155
container_title Applied mathematics and mechanics
container_volume 35
creator Wei, D. M.
Al-Ashhab, S.
description The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.
doi_str_mv 10.1007/s10483-014-1854-6
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201409005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662138330</cqvip_id><wanfj_id>yysxhlx_e201409005</wanfj_id><sourcerecordid>yysxhlx_e201409005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNviUYhOPjabxZMUv6DoQT2HkE3aLdukJlvW_femtOjNy8zlfeZhXoQuCdwQgOo2EeCSYSAcE1lyLI7QhJQVw7Qq-TGaAC0Z5pJWp-gspRUA8IrzCbp7b9dtp2Pbj0UK3bZvg0-FC7HwweNXO_TBt9oXmzDYiDs9FK7btk2eYThHJ053yV4c9hR9Pj58zJ7x_O3pZXY_x4ZJ1mNCa1fRRleklkBMbYw0gmtrpQNSyqbRWghbasdrJ7lxoqSQSXCOCOBGsCm63t8dtHfaL9QqbKPPRjWO6XvZfStL8-NQA5Q5TPZhE0NK0Tq1ie1ax1ERULuq1L4qlQm1q0rtBHTPpJz1Cxv_DP9BVwfRMvjFV-Z-TUJQkl9nwH4Azbd3jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Similarity solutions for non-Newtonian power-law fluid flow</title><source>Springer Nature</source><creator>Wei, D. M. ; Al-Ashhab, S.</creator><creatorcontrib>Wei, D. M. ; Al-Ashhab, S.</creatorcontrib><description>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-014-1854-6</identifier><language>eng</language><publisher>Heidelberg: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2014-09, Vol.35 (9), p.1155-1166</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</citedby><cites>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, D. M.</creatorcontrib><creatorcontrib>Al-Ashhab, S.</creatorcontrib><title>Similarity solutions for non-Newtonian power-law fluid flow</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNviUYhOPjabxZMUv6DoQT2HkE3aLdukJlvW_femtOjNy8zlfeZhXoQuCdwQgOo2EeCSYSAcE1lyLI7QhJQVw7Qq-TGaAC0Z5pJWp-gspRUA8IrzCbp7b9dtp2Pbj0UK3bZvg0-FC7HwweNXO_TBt9oXmzDYiDs9FK7btk2eYThHJ053yV4c9hR9Pj58zJ7x_O3pZXY_x4ZJ1mNCa1fRRleklkBMbYw0gmtrpQNSyqbRWghbasdrJ7lxoqSQSXCOCOBGsCm63t8dtHfaL9QqbKPPRjWO6XvZfStL8-NQA5Q5TPZhE0NK0Tq1ie1ax1ERULuq1L4qlQm1q0rtBHTPpJz1Cxv_DP9BVwfRMvjFV-Z-TUJQkl9nwH4Azbd3jw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wei, D. M.</creator><creator>Al-Ashhab, S.</creator><general>Shanghai University</general><general>Department of Mathematics, University of New 0rleans, LA 70148,U.S.A.%Department of Mathematics, Al Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140901</creationdate><title>Similarity solutions for non-Newtonian power-law fluid flow</title><author>Wei, D. M. ; Al-Ashhab, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, D. M.</creatorcontrib><creatorcontrib>Al-Ashhab, S.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, D. M.</au><au>Al-Ashhab, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity solutions for non-Newtonian power-law fluid flow</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>35</volume><issue>9</issue><spage>1155</spage><epage>1166</epage><pages>1155-1166</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</abstract><cop>Heidelberg</cop><pub>Shanghai University</pub><doi>10.1007/s10483-014-1854-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2014-09, Vol.35 (9), p.1155-1166
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201409005
source Springer Nature
subjects Applications of Mathematics
Classical Mechanics
Fluid- and Aerodynamics
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Partial Differential Equations
title Similarity solutions for non-Newtonian power-law fluid flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20solutions%20for%20non-Newtonian%20power-law%20fluid%20flow&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wei,%20D.%20M.&rft.date=2014-09-01&rft.volume=35&rft.issue=9&rft.spage=1155&rft.epage=1166&rft.pages=1155-1166&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-014-1854-6&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e201409005%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662138330&rft_wanfj_id=yysxhlx_e201409005&rfr_iscdi=true