Loading…
Similarity solutions for non-Newtonian power-law fluid flow
The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is establishe...
Saved in:
Published in: | Applied mathematics and mechanics 2014-09, Vol.35 (9), p.1155-1166 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63 |
container_end_page | 1166 |
container_issue | 9 |
container_start_page | 1155 |
container_title | Applied mathematics and mechanics |
container_volume | 35 |
creator | Wei, D. M. Al-Ashhab, S. |
description | The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions. |
doi_str_mv | 10.1007/s10483-014-1854-6 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201409005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662138330</cqvip_id><wanfj_id>yysxhlx_e201409005</wanfj_id><sourcerecordid>yysxhlx_e201409005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNviUYhOPjabxZMUv6DoQT2HkE3aLdukJlvW_femtOjNy8zlfeZhXoQuCdwQgOo2EeCSYSAcE1lyLI7QhJQVw7Qq-TGaAC0Z5pJWp-gspRUA8IrzCbp7b9dtp2Pbj0UK3bZvg0-FC7HwweNXO_TBt9oXmzDYiDs9FK7btk2eYThHJ053yV4c9hR9Pj58zJ7x_O3pZXY_x4ZJ1mNCa1fRRleklkBMbYw0gmtrpQNSyqbRWghbasdrJ7lxoqSQSXCOCOBGsCm63t8dtHfaL9QqbKPPRjWO6XvZfStL8-NQA5Q5TPZhE0NK0Tq1ie1ax1ERULuq1L4qlQm1q0rtBHTPpJz1Cxv_DP9BVwfRMvjFV-Z-TUJQkl9nwH4Azbd3jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Similarity solutions for non-Newtonian power-law fluid flow</title><source>Springer Nature</source><creator>Wei, D. M. ; Al-Ashhab, S.</creator><creatorcontrib>Wei, D. M. ; Al-Ashhab, S.</creatorcontrib><description>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</description><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-014-1854-6</identifier><language>eng</language><publisher>Heidelberg: Shanghai University</publisher><subject>Applications of Mathematics ; Classical Mechanics ; Fluid- and Aerodynamics ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Applied mathematics and mechanics, 2014-09, Vol.35 (9), p.1155-1166</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</citedby><cites>FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wei, D. M.</creatorcontrib><creatorcontrib>Al-Ashhab, S.</creatorcontrib><title>Similarity solutions for non-Newtonian power-law fluid flow</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</description><subject>Applications of Mathematics</subject><subject>Classical Mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNviUYhOPjabxZMUv6DoQT2HkE3aLdukJlvW_femtOjNy8zlfeZhXoQuCdwQgOo2EeCSYSAcE1lyLI7QhJQVw7Qq-TGaAC0Z5pJWp-gspRUA8IrzCbp7b9dtp2Pbj0UK3bZvg0-FC7HwweNXO_TBt9oXmzDYiDs9FK7btk2eYThHJ053yV4c9hR9Pj58zJ7x_O3pZXY_x4ZJ1mNCa1fRRleklkBMbYw0gmtrpQNSyqbRWghbasdrJ7lxoqSQSXCOCOBGsCm63t8dtHfaL9QqbKPPRjWO6XvZfStL8-NQA5Q5TPZhE0NK0Tq1ie1ax1ERULuq1L4qlQm1q0rtBHTPpJz1Cxv_DP9BVwfRMvjFV-Z-TUJQkl9nwH4Azbd3jw</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Wei, D. M.</creator><creator>Al-Ashhab, S.</creator><general>Shanghai University</general><general>Department of Mathematics, University of New 0rleans, LA 70148,U.S.A.%Department of Mathematics, Al Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140901</creationdate><title>Similarity solutions for non-Newtonian power-law fluid flow</title><author>Wei, D. M. ; Al-Ashhab, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Classical Mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, D. M.</creatorcontrib><creatorcontrib>Al-Ashhab, S.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, D. M.</au><au>Al-Ashhab, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Similarity solutions for non-Newtonian power-law fluid flow</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>35</volume><issue>9</issue><spage>1155</spage><epage>1166</epage><pages>1155-1166</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>The problem of the boundary layer flow of power law non-Newtonian fluids with a novel boundary condition is studied. The existence and uniqueness of the solutions are examined, which are found to depend on the curvature of the solutions for different values of the power law index n. It is established with the aid of the Picard-Lindelof theorem that the nonlinear boundary value problem has a unique solution in the global domain for all values of the power law index n but with certain conditions on the curva- ture of the solutions. This is done after a suitable transformation of the dependent and independent variables. For 0 〈 n ≤ 1, the solution has a positive curvature, while for n 〉 1, the solution has a negative or zero curvature on some part of the global domain. Some solutions are presented graphically to illustrate the results and the behaviors of the solutions.</abstract><cop>Heidelberg</cop><pub>Shanghai University</pub><doi>10.1007/s10483-014-1854-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2014-09, Vol.35 (9), p.1155-1166 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e201409005 |
source | Springer Nature |
subjects | Applications of Mathematics Classical Mechanics Fluid- and Aerodynamics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Partial Differential Equations |
title | Similarity solutions for non-Newtonian power-law fluid flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Similarity%20solutions%20for%20non-Newtonian%20power-law%20fluid%20flow&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wei,%20D.%20M.&rft.date=2014-09-01&rft.volume=35&rft.issue=9&rft.spage=1155&rft.epage=1166&rft.pages=1155-1166&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-014-1854-6&rft_dat=%3Cwanfang_jour_cross%3Eyysxhlx_e201409005%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-129f72da719801c9cc8c64aee8f0158ddaa66e5af49f84cf6520c380ff1604c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=662138330&rft_wanfj_id=yysxhlx_e201409005&rfr_iscdi=true |