Loading…
Dynamic modeling and simulation of deploying process for space solar power satellite receiver
To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system cont...
Saved in:
Published in: | Applied mathematics and mechanics 2018-02, Vol.39 (2), p.261-274 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method. First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-018-2293-6 |