Loading…

Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface

In this research, the three-dimensional (3D) steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed. The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation. The slip for viscous fluid is considered. Th...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2021-03, Vol.42 (3), p.357-370
Main Authors: Chu, Yuming, Khan, M. I., Rehman, M. I. U., Kadry, S., Qayyum, S., Waqas, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this research, the three-dimensional (3D) steady and incompressible laminar Homann stagnation point nanofluid flow over a porous moving surface is addressed. The disturbance in the porous medium has been characterized by the Darcy-Forchheimer relation. The slip for viscous fluid is considered. The energy equation is organized in view of radiative heat flux which plays an important role in the heat transfer rate. The governing flow expressions are first altered into first-order ordinary ones and then solved numerically by the shooting method. Dual solutions are obtained for the velocity, skin friction coefficient, temperature, and Nusselt number subject to sundry flow parameters, magnetic parameter, Darcy-Forchheimer number, thermal radiation parameter, suction parameter, and dimensionless slip parameter. In this research, the main consideration is given to the engineering interest like skin friction coefficient (velocity gradient or surface drag force) and Nusselt number (temperature gradient or heat transfer rate) and discussed numerically through tables. In conclusion, it is noticed from the stability results that the upper branch solution (UBS) is more reliable and physically stable than the lower branch solution (LBS).
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-021-2700-7