Loading…

Embedding antimony nanoparticles into metal–organic framework derived TiO2@carbon nanotablets for high-performance sodium storage

Titanium dioxide (TiO2) has been widely investigated as a candidate for anode materials of sodium-ion batteries (SIBs) due to its low cost and high abundance. However, the intrinsic sluggish ion/electron transfer rate hinders its practical applications for high energy density storage devices. In con...

Full description

Saved in:
Bibliographic Details
Published in:Chinese chemical letters 2023-10, Vol.34 (10), p.108186-292, Article 108186
Main Authors: Yao, Tianhao, Li, Li, Wang, Hongkang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Titanium dioxide (TiO2) has been widely investigated as a candidate for anode materials of sodium-ion batteries (SIBs) due to its low cost and high abundance. However, the intrinsic sluggish ion/electron transfer rate hinders its practical applications for high energy density storage devices. In contrast, antimony (Sb) shows high specific theoretical capacity (660 mAh/g) as well as excellent electron conductivity, but the large volume variation upon cycling usually leads to severe capacity fading. Herein, with the objective of achieving high-performance sodium storage anode materials, TiO2@C-Sb nanotablets with a small amount of Sb content (6.4 wt%) are developed through calcination Ti-metal–organic framework (MIL-125) derived TiO2@C/SbCl3 mixture under reductive atmosphere. Benefitting from the synergetic effect of well-dispersed Sb nanoparticles as well as robust porous TiO2@C substrate, the TiO2@C-Sb shows enhanced electron/ion transfer rate and predominantly pseudocapacitive sodium storage behavior, delivering a reversible capacity of 219 mAh/g at 0.5 A/g even after 1000 cycles. More significantly, this method may be commonly used to incorporate other alloy-based high-theoretical materials into MIL-125-derived TiO2@C, which is promising for developing high-energy-density TiO2-based energy storage devices. [Display omitted] Metal–organic-framework-derived porous TiO2@carbon nanotablets decorated with Sb nanoparticles were developed through absorption and subsequent calcination, which shows improved electron/ion transfer rate and excellent cycle performance as an anode for sodium ion batteries.
ISSN:1001-8417
DOI:10.1016/j.cclet.2023.108186