Loading…
Separation and analysis of lignite bioconversion products
The bioconversion of coal at ambient conditions is a promising technology for coal processing, although the mechanisms of coal degradation are still not understood fully. In this work, the bioconversion of lig- nite was studied using a fungus isolated from decaying wood. The lignite samples were oxi...
Saved in:
Published in: | International journal of mining science and technology 2012-07, Vol.22 (4), p.529-532 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bioconversion of coal at ambient conditions is a promising technology for coal processing, although the mechanisms of coal degradation are still not understood fully. In this work, the bioconversion of lig- nite was studied using a fungus isolated from decaying wood. The lignite samples were oxidized with nitric acid under moderate conditions and then the oxidized samples were placed on a potato medium with isolated fungus for lignite bioconversion. Lignite, oxidized lignite and residual products after bioconversion of lignite were sequentially extracted with petroleum ether, CS2, methanol, acetone and tetrahydrofuran (THt:), and then each extract was characterized by gas chromatography-mass spectrom- etry (GC/MS). The differences in composition and structure among the samples were inferred by compar- ing the differences between the extracts. The results show that aromatics with one or several benzene rings and their derivatives; and some long-chain alkanes containing oxygen decreased in the metha- nol-, acetone-, and THF-soluble fraction from residual lignite, whereas long chain or a few branched alkanes and small quantities of aromatic compounds increased in petroleum ether and CS2 soluble fractions. |
---|---|
ISSN: | 2095-2686 |
DOI: | 10.1016/j.ijmst.2012.01.015 |