Loading…

Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure

Background Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exe...

Full description

Saved in:
Bibliographic Details
Published in:Chinese medical journal 2010-12, Vol.123 (24), p.3626-3633
Main Authors: Rong, Shu-Ling, Wang, Yong-Jin, Wang, Xiao-Lin, Lu, Yong-Xin, Wu, Yin, Liu, Qi-Yun, Mi, Shao-Hua, Xu, Yu-Lan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats.Methods Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n=6) and MI-GFP group (n=6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n=6)and S-GFP group (n=6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting.Results Primary rat myoblasts were retrovirally transduced to secrete rhlGF-1 and tissue-engineered into implantable BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted consistent levels of hIGF (0.4-1.2 μg·BAM-1·d-1). When implanted into syngeneic rat, IGF-BAMs secreted and delivered rhIGF. Four weeks after therapy,the hemodynamics was improved significantly in MI rats treated with IGF-BAMs compared with those treated with GFP-BAMs. The levels of serum IGF-1 were increased significantly in both MI and sham rats treated with IGF-BA
ISSN:0366-6999
2542-5641
DOI:10.3760/cma.j.issn.0366-6999.2010.24.022