Loading…
Unraveling salt stress signaling in plants
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic s...
Saved in:
Published in: | Journal of integrative plant biology 2018-09, Vol.60 (9), p.796-804 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore, to adapt to salt stress, plants rely on signals and pathways that re‐establish cellular ionic, osmotic, and reactive oxygen species (ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis, via extruding sodium ions into the apoplast. Mitogen‐activated protein kinase cascades mediate ionic, osmotic, and ROS homeostasis. SnRK2 (sucrose nonfermenting 1‐related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt‐induced stress signaling in plants.
Salt stress is the main environmental factor limiting crop productivity. A better understanding of the mechanisms that regulate salt tolerance will help researchers design ways to improve crop performance. In this review, we discuss recent advances in determining the components of plants that respond to salt stress and their regulatory mechanisms. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/jipb.12689 |