Loading…

OsWR2 recruits HDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress

ABSTRACT Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of integrative plant biology 2023-07, Vol.65 (7), p.1651-1669
Main Authors: Guo, Yalu, Tan, Yiqing, Qu, Minghao, Hong, Kai, Zeng, Longjun, Wang, Lei, Zhuang, Chuxiong, Qian, Qian, Hu, Jiang, Xiong, Guosheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Drought stress is a major environmental factor that limits the growth, development, and yield of rice (Oryza sativa L.). Histone deacetylases (HDACs) are involved in the regulation of drought stress responses. HDA704 is an RPD3/HDA1 class HDAC that mediates the deacetylation of H4K8 (lysine 8 of histone H4) for drought tolerance in rice. In this study, we show that plants overexpressing HDA704 (HDA704‐OE) are resistant to drought stress and sensitive to abscisic acid (ABA), whereas HDA704 knockout mutant (hda704) plants displayed decreased drought tolerance and ABA sensitivity. Transcriptome analysis revealed that HDA704 regulates the expression of ABA‐related genes in response to drought stress. Moreover, HDA704 was recruited by a drought‐resistant transcription factor, WAX SYNTHESIS REGULATORY 2 (OsWR2), and co‐regulated the expression of the ABA biosynthesis genes NINE‐CIS‐EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), NCED4, and NCED5 under drought stress. HDA704 also repressed the expression of ABA‐INSENSITIVE 5 (OsABI5) and DWARF AND SMALL SEED 1 (OsDSS1) by regulating H4K8ac levels in the promoter regions in response to polyethylene glycol 6000 treatment. In agreement, the loss of OsABI5 function increased resistance to dehydration stress in rice. Our results demonstrate that HDA704 is a positive regulator of the drought stress response and offers avenues for improving drought resistance in rice. Histone modifications are involved in regulating the expression of drought‐responsive genes. The histone deacetylase HDA704 regulates the deacetylation of H4K8 (lysine 8 of histone H4) in response to drought stress. HDA704 can be recruited by the transcription factor OsWR2 to co‐regulate the expression of abscisic acid‐related genes under drought stress.
ISSN:1672-9072
1744-7909
DOI:10.1111/jipb.13481