Loading…
A comparison of the GWCE and mixed P − P1 formulations in finite-element linearized shallow-water models
SUMMARY The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particula...
Saved in:
Published in: | International journal for numerical methods in fluids 2012-04, Vol.68 (12), p.1497-1523 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SUMMARY
The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P − P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier‐based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 |
DOI: | 10.1002/fld.2540 |