Loading…
On $ {p} $-groups of maximal class
Let R be the ring \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[x]/\left({{x^p-1}\over{x-1}}\right) = {\mathbb Z}[\bar{x}] $\end{document} and let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ \mathfrak {a} $\end{document} b...
Saved in:
Published in: | Mathematische Nachrichten 2011-03, Vol.284 (4), p.471-493 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let R be the ring \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[x]/\left({{x^p-1}\over{x-1}}\right) = {\mathbb Z}[\bar{x}] $\end{document} and let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ \mathfrak {a} $\end{document} be the ideal of R generated by $ (\bar{x}-1) $. In this paper, we discuss the structure of the \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[C_p] $\end{document}‐module \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ (R/\mathfrak {a}^{n-1}) \wedge (R/\mathfrak {a}^{n-1}) $\end{document}, which plays an important role in the theory of p‐groups of maximal class (see 2–5). The generators of this module allow us to obtain the defining relations of some important examples of p‐groups of maximal class with Y1 of class two. In particular we obtain the best possible estimates for the degree of commutativity of p‐groups of maximal class with Y1 of class two. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200710198 |