Loading…

On $ {p} $-groups of maximal class

Let R be the ring \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[x]/\left({{x^p-1}\over{x-1}}\right) = {\mathbb Z}[\bar{x}] $\end{document} and let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ \mathfrak {a} $\end{document} b...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2011-03, Vol.284 (4), p.471-493
Main Authors: Jaikin-Zapirain, A., Vera-López, A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let R be the ring \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[x]/\left({{x^p-1}\over{x-1}}\right) = {\mathbb Z}[\bar{x}] $\end{document} and let \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ \mathfrak {a} $\end{document} be the ideal of R generated by $ (\bar{x}-1) $. In this paper, we discuss the structure of the \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\mathbb Z}[C_p] $\end{document}‐module \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ (R/\mathfrak {a}^{n-1}) \wedge (R/\mathfrak {a}^{n-1}) $\end{document}, which plays an important role in the theory of p‐groups of maximal class (see 2–5). The generators of this module allow us to obtain the defining relations of some important examples of p‐groups of maximal class with Y1 of class two. In particular we obtain the best possible estimates for the degree of commutativity of p‐groups of maximal class with Y1 of class two. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.200710198