Loading…
Foreground Detection by Competitive Learning for Varying Input Distributions
One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the input data could change with time (e.g. changing illuminations, waving trees, wa...
Saved in:
Published in: | International journal of neural systems 2018-06, Vol.28 (5), p.1750056 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most important challenges in computer vision applications is the background modeling, especially when the background is dynamic and the input distribution might not be stationary, i.e. the distribution of the input data could change with time (e.g. changing illuminations, waving trees, water, etc.). In this work, an unsupervised learning neural network is proposed which is able to cope with progressive changes in the input distribution. It is based on a dual learning mechanism which manages the changes of the input distribution separately from the cluster detection. The proposal is adequate for scenes where the background varies slowly. The performance of the method is tested against several state-of-the-art foreground detectors both quantitatively and qualitatively, with favorable results. |
---|---|
ISSN: | 0129-0657 1793-6462 |
DOI: | 10.1142/S0129065717500563 |