Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)

One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detect...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal spray technology 2016-01, Vol.25 (1-2), p.21-27
Main Authors: Hartz-Behrend, K., Schaup, J., Zierhut, J., Schein, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453
cites cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453
container_end_page 27
container_issue 1-2
container_start_page 21
container_title Journal of thermal spray technology
container_volume 25
creator Hartz-Behrend, K.
Schaup, J.
Zierhut, J.
Schein, J.
description One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.
doi_str_mv 10.1007/s11666-015-0341-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11666_015_0341_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11666_015_0341_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwAey8hIXh-t0so4qXVBUErVhatuMUl5AgO1XVvyelrNncuYuZ0eggdEnhhgLo20ypUooAlQS4oASO0IhKIQgFqo6HH2RBCsXhFJ3lvAYAqZgcoddp1_apa5rYrnD_EfBiG1v8HlPAZfL47TvZHX5JnQ8542Xeu8rUxzr6aBs8D5v0K_22S58ZX5Xz-fU5Oqltk8PFn47R8v5uMX0ks-eHp2k5I14w0ZPKBqio4lZ7Vk24Yk5LkFUVnC4ssFp7za0LqnCUgXfMA2NKFk5o7iZeSD5G9NDrU5dzCrX5TvHLpp2hYPZQzAGKGaCYPZThjBE7ZPLgbVchmXW3Se0w85_QD48IY_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><source>Springer Link</source><creator>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</creator><creatorcontrib>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</creatorcontrib><description>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-015-0341-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2016-01, Vol.25 (1-2), p.21-27</ispartof><rights>ASM International 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</citedby><cites>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hartz-Behrend, K.</creatorcontrib><creatorcontrib>Schaup, J.</creatorcontrib><creatorcontrib>Zierhut, J.</creatorcontrib><creatorcontrib>Schein, J.</creatorcontrib><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwAey8hIXh-t0so4qXVBUErVhatuMUl5AgO1XVvyelrNncuYuZ0eggdEnhhgLo20ypUooAlQS4oASO0IhKIQgFqo6HH2RBCsXhFJ3lvAYAqZgcoddp1_apa5rYrnD_EfBiG1v8HlPAZfL47TvZHX5JnQ8542Xeu8rUxzr6aBs8D5v0K_22S58ZX5Xz-fU5Oqltk8PFn47R8v5uMX0ks-eHp2k5I14w0ZPKBqio4lZ7Vk24Yk5LkFUVnC4ssFp7za0LqnCUgXfMA2NKFk5o7iZeSD5G9NDrU5dzCrX5TvHLpp2hYPZQzAGKGaCYPZThjBE7ZPLgbVchmXW3Se0w85_QD48IY_M</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hartz-Behrend, K.</creator><creator>Schaup, J.</creator><creator>Zierhut, J.</creator><creator>Schein, J.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><author>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartz-Behrend, K.</creatorcontrib><creatorcontrib>Schaup, J.</creatorcontrib><creatorcontrib>Zierhut, J.</creatorcontrib><creatorcontrib>Schein, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartz-Behrend, K.</au><au>Schaup, J.</au><au>Zierhut, J.</au><au>Schein, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>25</volume><issue>1-2</issue><spage>21</spage><epage>27</epage><pages>21-27</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-015-0341-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1059-9630
ispartof Journal of thermal spray technology, 2016-01, Vol.25 (1-2), p.21-27
issn 1059-9630
1544-1016
language eng
recordid cdi_crossref_primary_10_1007_s11666_015_0341_0
source Springer Link
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Machines
Manufacturing
Materials Science
Peer Reviewed
Processes
Surfaces and Interfaces
Thin Films
Tribology
title Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T21%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Twin%20Wire%20Arc%20Spray%20Process%20Using%20Artificial%20Neural%20Networks%20(ANN)&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Hartz-Behrend,%20K.&rft.date=2016-01-01&rft.volume=25&rft.issue=1-2&rft.spage=21&rft.epage=27&rft.pages=21-27&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-015-0341-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s11666_015_0341_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true