Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)
One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detect...
Saved in:
Published in: | Journal of thermal spray technology 2016-01, Vol.25 (1-2), p.21-27 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453 |
---|---|
cites | cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453 |
container_end_page | 27 |
container_issue | 1-2 |
container_start_page | 21 |
container_title | Journal of thermal spray technology |
container_volume | 25 |
creator | Hartz-Behrend, K. Schaup, J. Zierhut, J. Schein, J. |
description | One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations. |
doi_str_mv | 10.1007/s11666-015-0341-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s11666_015_0341_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11666_015_0341_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEqXwAey8hIXh-t0so4qXVBUErVhatuMUl5AgO1XVvyelrNncuYuZ0eggdEnhhgLo20ypUooAlQS4oASO0IhKIQgFqo6HH2RBCsXhFJ3lvAYAqZgcoddp1_apa5rYrnD_EfBiG1v8HlPAZfL47TvZHX5JnQ8542Xeu8rUxzr6aBs8D5v0K_22S58ZX5Xz-fU5Oqltk8PFn47R8v5uMX0ks-eHp2k5I14w0ZPKBqio4lZ7Vk24Yk5LkFUVnC4ssFp7za0LqnCUgXfMA2NKFk5o7iZeSD5G9NDrU5dzCrX5TvHLpp2hYPZQzAGKGaCYPZThjBE7ZPLgbVchmXW3Se0w85_QD48IY_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><source>Springer Link</source><creator>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</creator><creatorcontrib>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</creatorcontrib><description>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-015-0341-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2016-01, Vol.25 (1-2), p.21-27</ispartof><rights>ASM International 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</citedby><cites>FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hartz-Behrend, K.</creatorcontrib><creatorcontrib>Schaup, J.</creatorcontrib><creatorcontrib>Zierhut, J.</creatorcontrib><creatorcontrib>Schein, J.</creatorcontrib><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEqXwAey8hIXh-t0so4qXVBUErVhatuMUl5AgO1XVvyelrNncuYuZ0eggdEnhhgLo20ypUooAlQS4oASO0IhKIQgFqo6HH2RBCsXhFJ3lvAYAqZgcoddp1_apa5rYrnD_EfBiG1v8HlPAZfL47TvZHX5JnQ8542Xeu8rUxzr6aBs8D5v0K_22S58ZX5Xz-fU5Oqltk8PFn47R8v5uMX0ks-eHp2k5I14w0ZPKBqio4lZ7Vk24Yk5LkFUVnC4ssFp7za0LqnCUgXfMA2NKFk5o7iZeSD5G9NDrU5dzCrX5TvHLpp2hYPZQzAGKGaCYPZThjBE7ZPLgbVchmXW3Se0w85_QD48IY_M</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hartz-Behrend, K.</creator><creator>Schaup, J.</creator><creator>Zierhut, J.</creator><creator>Schein, J.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160101</creationdate><title>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</title><author>Hartz-Behrend, K. ; Schaup, J. ; Zierhut, J. ; Schein, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartz-Behrend, K.</creatorcontrib><creatorcontrib>Schaup, J.</creatorcontrib><creatorcontrib>Zierhut, J.</creatorcontrib><creatorcontrib>Schein, J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartz-Behrend, K.</au><au>Schaup, J.</au><au>Zierhut, J.</au><au>Schein, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN)</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>25</volume><issue>1-2</issue><spage>21</spage><epage>27</epage><pages>21-27</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>One approach for controlling the twin wire arc spray process is to use optical properties of the particle beam as input parameters for a process control. The idea is that changes in the process like eroded contact nozzles or variations of current, voltage, and/or atomizing gas pressure may be detected through observation of the particle beam. It can be assumed that if these properties deviate significantly from those obtained from a beam recorded for an optimal coating process, the spray particle and thus the coating properties change significantly. The goal is to detect these deviations and compensate the occurring errors by adjusting appropriate process parameters for the wire arc spray unit. One method for monitoring optical properties is to apply the diagnostic system particle flux imaging (PFI): PFI fits an ellipse to an image of a particle beam thereby defining easy to analyze characteristical parameters by relating optical beam properties to ellipse parameters. Using artificial neural networks (ANN), mathematical relations between ellipse and process parameters can be defined. It will be shown that in the case of a process disturbance through the use of an ANN-based control new process parameters can be computed to compensate particle beam deviations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-015-0341-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9630 |
ispartof | Journal of thermal spray technology, 2016-01, Vol.25 (1-2), p.21-27 |
issn | 1059-9630 1544-1016 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s11666_015_0341_0 |
source | Springer Link |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Machines Manufacturing Materials Science Peer Reviewed Processes Surfaces and Interfaces Thin Films Tribology |
title | Controlling the Twin Wire Arc Spray Process Using Artificial Neural Networks (ANN) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T21%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Twin%20Wire%20Arc%20Spray%20Process%20Using%20Artificial%20Neural%20Networks%20(ANN)&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Hartz-Behrend,%20K.&rft.date=2016-01-01&rft.volume=25&rft.issue=1-2&rft.spage=21&rft.epage=27&rft.pages=21-27&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-015-0341-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s11666_015_0341_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c424t-dae0d163a7c2d8362b7505ddeb79a02f7c73abe69b120cb2c022659b473b8c453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |