Second Zagreb and Sigma Indices of Semi and Total Transformations of Graphs
The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of structure-property relations including the transformations of molecules is of utmost importance in correlations with corresponding physicochemical properties. The graph topological indices have been used effectively for such study and, in particular, bond-based indices play a vital role. The bond-additive topological indices of a molecular graph are defined as a sum of edge measures over all edges in which edge measures can be computed based on degrees, closeness, peripherality, and irregularity. In this study, we provide the mathematical characterization of the transformation of a structure that can be accomplished by the novel edge adjacency and incidence relations. We derive the exact expressions of bond type indices such as second Zagreb, sigma indices, and their coindices of total transformation and two types of semitransformations of the molecules which in turn can be used to characterize the topochemical and topostructural properties. |
---|---|
ISSN: | 1076-2787 1099-0526 |
DOI: | 10.1155/2021/6828424 |