Loading…
NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM
In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are present...
Saved in:
Published in: | Journal of computational mathematics 2005-03, Vol.23 (2), p.185-198 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 198 |
container_issue | 2 |
container_start_page | 185 |
container_title | Journal of computational mathematics |
container_volume | 23 |
creator | Chen, Shao-chun Zhao, Yong-cheng Shi, Dong-yang |
description | In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given. |
format | article |
fullrecord | <record><control><sourceid>jstor</sourceid><recordid>TN_cdi_jstor_primary_43693224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43693224</jstor_id><sourcerecordid>43693224</sourcerecordid><originalsourceid>FETCH-jstor_primary_436932243</originalsourceid><addsrcrecordid>eNqFTD0KwjAYDaJg_TmCkAsU0iRaMrYx1UKblK8pjqWDgkVRGhdHb-SZPIkZ3J3e_xuhIBIiCuOIiTEKCF3zUHAipmjmXE8IYZTHATpoo7H8vN7YE2l0ZqDM9Q6rQpVK2xp7w4sir2wuvWjA7rGBrQJc-15TJIArBbaBNLG5_6rApH67QJNTd3HH5Q_naJUpK_dh7x63ob0P52s3PFvONoJRytm__Av-NjeG</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Chen, Shao-chun ; Zhao, Yong-cheng ; Shi, Dong-yang</creator><creatorcontrib>Chen, Shao-chun ; Zhao, Yong-cheng ; Shi, Dong-yang</creatorcontrib><description>In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.</description><identifier>ISSN: 0254-9409</identifier><identifier>EISSN: 1991-7139</identifier><language>eng</language><publisher>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</publisher><subject>Bending ; Convergent boundaries ; Degrees of freedom ; Interpolation ; Mathematical sets ; Perceptron convergence procedure ; Polynomials ; Shape functions ; Vertices</subject><ispartof>Journal of computational mathematics, 2005-03, Vol.23 (2), p.185-198</ispartof><rights>Copyright 2005 AMSS, Chinese Academy of Sciences and VSP</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43693224$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43693224$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,58236,58469</link.rule.ids></links><search><creatorcontrib>Chen, Shao-chun</creatorcontrib><creatorcontrib>Zhao, Yong-cheng</creatorcontrib><creatorcontrib>Shi, Dong-yang</creatorcontrib><title>NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM</title><title>Journal of computational mathematics</title><description>In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.</description><subject>Bending</subject><subject>Convergent boundaries</subject><subject>Degrees of freedom</subject><subject>Interpolation</subject><subject>Mathematical sets</subject><subject>Perceptron convergence procedure</subject><subject>Polynomials</subject><subject>Shape functions</subject><subject>Vertices</subject><issn>0254-9409</issn><issn>1991-7139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqFTD0KwjAYDaJg_TmCkAsU0iRaMrYx1UKblK8pjqWDgkVRGhdHb-SZPIkZ3J3e_xuhIBIiCuOIiTEKCF3zUHAipmjmXE8IYZTHATpoo7H8vN7YE2l0ZqDM9Q6rQpVK2xp7w4sir2wuvWjA7rGBrQJc-15TJIArBbaBNLG5_6rApH67QJNTd3HH5Q_naJUpK_dh7x63ob0P52s3PFvONoJRytm__Av-NjeG</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Chen, Shao-chun</creator><creator>Zhao, Yong-cheng</creator><creator>Shi, Dong-yang</creator><general>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</general><scope/></search><sort><creationdate>20050301</creationdate><title>NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM</title><author>Chen, Shao-chun ; Zhao, Yong-cheng ; Shi, Dong-yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-jstor_primary_436932243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bending</topic><topic>Convergent boundaries</topic><topic>Degrees of freedom</topic><topic>Interpolation</topic><topic>Mathematical sets</topic><topic>Perceptron convergence procedure</topic><topic>Polynomials</topic><topic>Shape functions</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shao-chun</creatorcontrib><creatorcontrib>Zhao, Yong-cheng</creatorcontrib><creatorcontrib>Shi, Dong-yang</creatorcontrib><jtitle>Journal of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shao-chun</au><au>Zhao, Yong-cheng</au><au>Shi, Dong-yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM</atitle><jtitle>Journal of computational mathematics</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>23</volume><issue>2</issue><spage>185</spage><epage>198</epage><pages>185-198</pages><issn>0254-9409</issn><eissn>1991-7139</eissn><abstract>In this paper we give a convergence theorem for non C⁰ nonconforming finite element to solve the elliptic fourth order singular perturbation problem. Two such kind of elements, a nine parameter triangular element and a twelve parameter rectangular element both with double set parameters, are presented. The convergence and numerical results of the two elements are given.</abstract><pub>Chinese Academy of Mathematices and System Sciences (AMSS) Chinese Academy of Sciences</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-9409 |
ispartof | Journal of computational mathematics, 2005-03, Vol.23 (2), p.185-198 |
issn | 0254-9409 1991-7139 |
language | eng |
recordid | cdi_jstor_primary_43693224 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Bending Convergent boundaries Degrees of freedom Interpolation Mathematical sets Perceptron convergence procedure Polynomials Shape functions Vertices |
title | NON C⁰ NONCONFORMING ELEMENTS FOR ELLIPTIC FOURTH ORDER SINGULAR PERTURBATION PROBLEM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NON%20C%E2%81%B0%20NONCONFORMING%20ELEMENTS%20FOR%20ELLIPTIC%20FOURTH%20ORDER%20SINGULAR%20PERTURBATION%20PROBLEM&rft.jtitle=Journal%20of%20computational%20mathematics&rft.au=Chen,%20Shao-chun&rft.date=2005-03-01&rft.volume=23&rft.issue=2&rft.spage=185&rft.epage=198&rft.pages=185-198&rft.issn=0254-9409&rft.eissn=1991-7139&rft_id=info:doi/&rft_dat=%3Cjstor%3E43693224%3C/jstor%3E%3Cgrp_id%3Ecdi_FETCH-jstor_primary_436932243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43693224&rfr_iscdi=true |