Loading…
Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us
Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3- -glucoside (kuromanin) as a representative compound of simpl...
Saved in:
Published in: | International journal of molecular sciences 2021-04, Vol.22 (8), p.3833 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63 |
container_end_page | |
container_issue | 8 |
container_start_page | 3833 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Pina, Fernando Alejo-Armijo, Alfonso Clemente, Adelaide Mendoza, Johan Seco, André Basílio, Nuno Parola, António Jorge |
description | Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3-
-glucoside (kuromanin) as a representative compound of simpler anthocyanins was fully characterized by stopped flow. This type of anthocyanin cannot confer significant color to plants without intra- or intermolecular interactions, complexation with metals or supramolecular structures as in
The anthocyanin's color system was compared with those of 3-deoxyanthocyanins and riccionidin A, the aglycone of auronidins. The three systems follow the same sequence of chemical reactions, but the respective thermodynamics and kinetics are dramatically different. |
doi_str_mv | 10.3390/ijms22083833 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2520861565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoMoPlZvniXgxYPVvNqmHgQt6wMWFFwRTyFtUzdL2qxJu9D_3siusnqagfnNx3zzAXCM0QWlGbrU88YTgjjllG6BfcwIiRBK0u2Nfg8ceD9HiFASZ7tgLyziFMd8H7yPl9b0nbYttDW8M3I5GN030a30qoK5NdbBl8F3qvFQt_DZyLbzV_BtJjv4PBu8LqWB-Uw12ndugLls4VQZA1_9IdippfHqaF1H4PVuPM0fosnT_WN-M4lKRnkXxaxWqaI8TiVJFWKsoHWGFaWlwmmcIpbUFS8QqgqUYVKSgpEEIUqKTIa1KqEjcL3SXfRFo6pStZ2TRiycbqQbhJVa_J20eiY-7FLw8BjOcRA4Wws4-9kr34lgpgwmZKts7wWJw3cTHCdxQE__oXPbuzbYCxTjCUsyzgN1vqJKZ713qv49BiPxnZnYzCzgJ5sGfuGfkOgXeOiR4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548646988</pqid></control><display><type>article</type><title>Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Pina, Fernando ; Alejo-Armijo, Alfonso ; Clemente, Adelaide ; Mendoza, Johan ; Seco, André ; Basílio, Nuno ; Parola, António Jorge</creator><creatorcontrib>Pina, Fernando ; Alejo-Armijo, Alfonso ; Clemente, Adelaide ; Mendoza, Johan ; Seco, André ; Basílio, Nuno ; Parola, António Jorge</creatorcontrib><description>Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3-
-glucoside (kuromanin) as a representative compound of simpler anthocyanins was fully characterized by stopped flow. This type of anthocyanin cannot confer significant color to plants without intra- or intermolecular interactions, complexation with metals or supramolecular structures as in
The anthocyanin's color system was compared with those of 3-deoxyanthocyanins and riccionidin A, the aglycone of auronidins. The three systems follow the same sequence of chemical reactions, but the respective thermodynamics and kinetics are dramatically different.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22083833</identifier><identifier>PMID: 33917158</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acids ; Algorithms ; Angiosperms ; Anthocyanins ; Anthocyanins - chemistry ; Chemical reactions ; Color ; Equilibrium ; Evolution ; Ferns ; Hydration ; Hydrogen-Ion Concentration ; Kinetics ; Metals ; Models, Chemical ; Mosses ; Physical chemistry ; Pigments, Biological - chemistry ; Plants ; Thermodynamics</subject><ispartof>International journal of molecular sciences, 2021-04, Vol.22 (8), p.3833</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63</citedby><cites>FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63</cites><orcidid>0000-0001-8529-6848 ; 0000-0003-0958-9651 ; 0000-0002-1333-9076 ; 0000-0002-0121-3695 ; 0000-0001-8691-4628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548646988/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548646988?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33917158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pina, Fernando</creatorcontrib><creatorcontrib>Alejo-Armijo, Alfonso</creatorcontrib><creatorcontrib>Clemente, Adelaide</creatorcontrib><creatorcontrib>Mendoza, Johan</creatorcontrib><creatorcontrib>Seco, André</creatorcontrib><creatorcontrib>Basílio, Nuno</creatorcontrib><creatorcontrib>Parola, António Jorge</creatorcontrib><title>Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3-
-glucoside (kuromanin) as a representative compound of simpler anthocyanins was fully characterized by stopped flow. This type of anthocyanin cannot confer significant color to plants without intra- or intermolecular interactions, complexation with metals or supramolecular structures as in
The anthocyanin's color system was compared with those of 3-deoxyanthocyanins and riccionidin A, the aglycone of auronidins. The three systems follow the same sequence of chemical reactions, but the respective thermodynamics and kinetics are dramatically different.</description><subject>Acids</subject><subject>Algorithms</subject><subject>Angiosperms</subject><subject>Anthocyanins</subject><subject>Anthocyanins - chemistry</subject><subject>Chemical reactions</subject><subject>Color</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Ferns</subject><subject>Hydration</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Metals</subject><subject>Models, Chemical</subject><subject>Mosses</subject><subject>Physical chemistry</subject><subject>Pigments, Biological - chemistry</subject><subject>Plants</subject><subject>Thermodynamics</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkctLxDAQxoMoPlZvniXgxYPVvNqmHgQt6wMWFFwRTyFtUzdL2qxJu9D_3siusnqagfnNx3zzAXCM0QWlGbrU88YTgjjllG6BfcwIiRBK0u2Nfg8ceD9HiFASZ7tgLyziFMd8H7yPl9b0nbYttDW8M3I5GN030a30qoK5NdbBl8F3qvFQt_DZyLbzV_BtJjv4PBu8LqWB-Uw12ndugLls4VQZA1_9IdippfHqaF1H4PVuPM0fosnT_WN-M4lKRnkXxaxWqaI8TiVJFWKsoHWGFaWlwmmcIpbUFS8QqgqUYVKSgpEEIUqKTIa1KqEjcL3SXfRFo6pStZ2TRiycbqQbhJVa_J20eiY-7FLw8BjOcRA4Wws4-9kr34lgpgwmZKts7wWJw3cTHCdxQE__oXPbuzbYCxTjCUsyzgN1vqJKZ713qv49BiPxnZnYzCzgJ5sGfuGfkOgXeOiR4g</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Pina, Fernando</creator><creator>Alejo-Armijo, Alfonso</creator><creator>Clemente, Adelaide</creator><creator>Mendoza, Johan</creator><creator>Seco, André</creator><creator>Basílio, Nuno</creator><creator>Parola, António Jorge</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8529-6848</orcidid><orcidid>https://orcid.org/0000-0003-0958-9651</orcidid><orcidid>https://orcid.org/0000-0002-1333-9076</orcidid><orcidid>https://orcid.org/0000-0002-0121-3695</orcidid><orcidid>https://orcid.org/0000-0001-8691-4628</orcidid></search><sort><creationdate>20210407</creationdate><title>Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us</title><author>Pina, Fernando ; Alejo-Armijo, Alfonso ; Clemente, Adelaide ; Mendoza, Johan ; Seco, André ; Basílio, Nuno ; Parola, António Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Algorithms</topic><topic>Angiosperms</topic><topic>Anthocyanins</topic><topic>Anthocyanins - chemistry</topic><topic>Chemical reactions</topic><topic>Color</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Ferns</topic><topic>Hydration</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Metals</topic><topic>Models, Chemical</topic><topic>Mosses</topic><topic>Physical chemistry</topic><topic>Pigments, Biological - chemistry</topic><topic>Plants</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pina, Fernando</creatorcontrib><creatorcontrib>Alejo-Armijo, Alfonso</creatorcontrib><creatorcontrib>Clemente, Adelaide</creatorcontrib><creatorcontrib>Mendoza, Johan</creatorcontrib><creatorcontrib>Seco, André</creatorcontrib><creatorcontrib>Basílio, Nuno</creatorcontrib><creatorcontrib>Parola, António Jorge</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pina, Fernando</au><au>Alejo-Armijo, Alfonso</au><au>Clemente, Adelaide</au><au>Mendoza, Johan</au><au>Seco, André</au><au>Basílio, Nuno</au><au>Parola, António Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>3833</spage><pages>3833-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Anthocyanins are the basis of the color of angiosperms, 3-deoxyanthocyanins and sphagnorubin play the same role in mosses and ferns, and auronidins are responsible for the color in liverworts. In this study, the color system of cyanidin-3-
-glucoside (kuromanin) as a representative compound of simpler anthocyanins was fully characterized by stopped flow. This type of anthocyanin cannot confer significant color to plants without intra- or intermolecular interactions, complexation with metals or supramolecular structures as in
The anthocyanin's color system was compared with those of 3-deoxyanthocyanins and riccionidin A, the aglycone of auronidins. The three systems follow the same sequence of chemical reactions, but the respective thermodynamics and kinetics are dramatically different.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33917158</pmid><doi>10.3390/ijms22083833</doi><orcidid>https://orcid.org/0000-0001-8529-6848</orcidid><orcidid>https://orcid.org/0000-0003-0958-9651</orcidid><orcidid>https://orcid.org/0000-0002-1333-9076</orcidid><orcidid>https://orcid.org/0000-0002-0121-3695</orcidid><orcidid>https://orcid.org/0000-0001-8691-4628</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-04, Vol.22 (8), p.3833 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8067881 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Acids Algorithms Angiosperms Anthocyanins Anthocyanins - chemistry Chemical reactions Color Equilibrium Evolution Ferns Hydration Hydrogen-Ion Concentration Kinetics Metals Models, Chemical Mosses Physical chemistry Pigments, Biological - chemistry Plants Thermodynamics |
title | Evolution of Flavylium-Based Color Systems in Plants: What Physical Chemistry Can Tell Us |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20Flavylium-Based%20Color%20Systems%20in%20Plants:%20What%20Physical%20Chemistry%20Can%20Tell%20Us&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Pina,%20Fernando&rft.date=2021-04-07&rft.volume=22&rft.issue=8&rft.spage=3833&rft.pages=3833-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22083833&rft_dat=%3Cproquest_pubme%3E2520861565%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-54fe7e3857a27e044b3f91e33ce1757046fd8b00db0912c2b4260032b9a7e3d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548646988&rft_id=info:pmid/33917158&rfr_iscdi=true |